УДК 622.276.1/.4:622.276.43

РЕТРОСПЕКТИВНЫЙ АНАЛИЗ ЦЕЛЕСООБРАЗНОСТИ ЗАВОДНЕНИЯ МАЛОЙ НЕФТЯНОЙ ЗАЛЕЖИ С УХУДШЕННЫМИ КОЛЛЕКТОРАМИ

А.Н. Янин

(ООО "Проектное бюро "ТЭРМ")

1. Постановка задачи

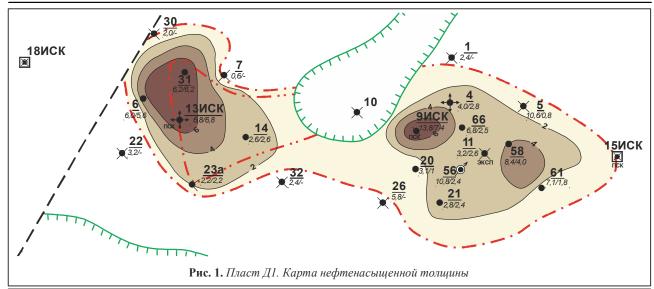
Одной из неоднозначно решаемых ключевых задач, которую приходится исследовать инженеру при разработке небольших залежей нефти, содержащихся в коллекторах с невысокой (ухудшенной) проницаемостью, является оценка целесообразности (или нецелесообразности) организации закачки воды (законтурной, приконтурной или внутриконтурной). Второй вопрос — это установление (в случае ППД) и поддержание рациональной величины компенсации отбора жидкости закачкой на подобных мелких залежах.

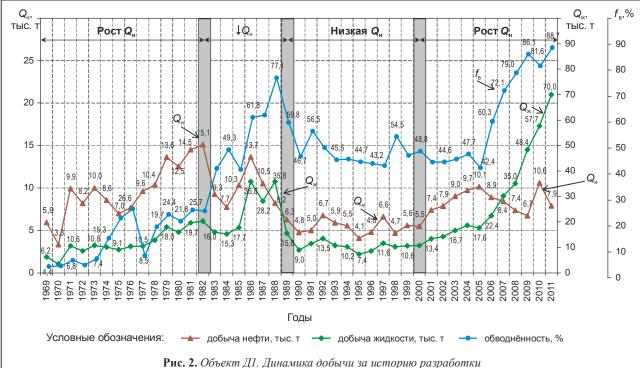
В качестве практического примера по исследованию эффективности внутриконтурной закачки рассмотрим ретроспективу разработки небольшой нефтяной залежи на одном из месторождений Урало-Поволжья, расположенном в пределах внешней зоны Предуральской массивной окраины Восточно-Европейского палеоконтинента (В.С. Шеин, 2006 г.).

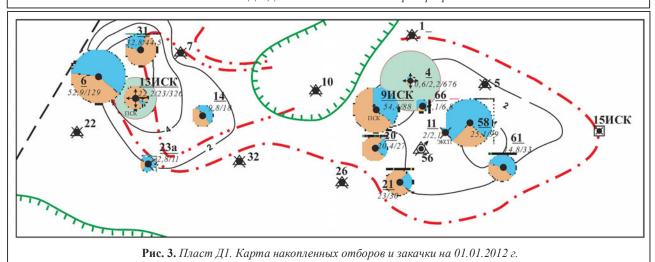
Цель исследования — путём классического геологопромыслового анализа установить, как очаговая внутриконтурная закачка воды в коллектор с ухудшенной проницаемостью повлияла на характеристику обводнения мелкой залежи, состояние пластового давления и ожидаемый коэффициент нефтеизвлечения.

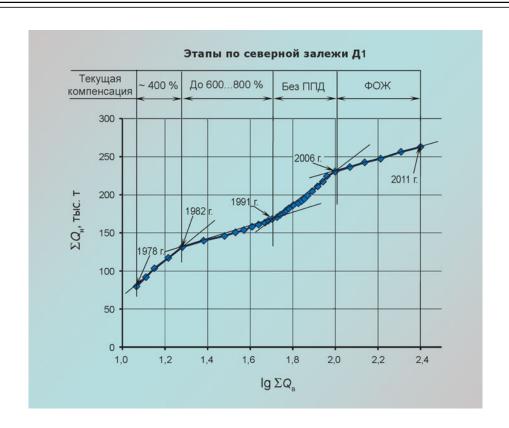
2. Характеристика геологического строения залежи нефти

Рассматриваемая малая залежь нефти приурочена к пласту Д1, по типу строения пластово-сводовая, час-


тично литологически ограниченная. Пласт представлен переслаиванием песчаников и алевролитов. Залегает на глубине 2060 м, абсолютная отметка ВНК -1952 м. Размеры залежи невелики -1.2×4.5 км, площадь нефтеносности -455 га, высота залежи -12 м (табл. 1).


Пласт Д1 вскрыт в 23 скважинах, из них в контуре нефтеносности залежи находится 16, за контуром – 7. Из указанного числа в эксплуатационном фонде предприятия находится 13 скважин, в том числе 11 добывающих и 2 – нагнетательные (с отработкой на нефть).


Средневзвешенная нефтенасыщенная толщина по залежи согласно гос. балансу запасов — 2,4 м, средняя по скважинам — 3,7 м (рис. 1). Пористость пласта — 16,2 %, проницаемость по ГИС — 80 мД (в том числе по западной части залежи — 50 мД, по восточной — 110 мД), проводимость пласта — 296 мД·м. Начальная нефтенасыщенность — 87 %. Песчанистость пласта — 70 %, расчленённость — 2,4, послойная неоднородность (по В.Д. Лысенко) — 0,317, средняя толщина одного проницаемого пропластка — 1,8 м.


Чистонефтяная зона (ЧНЗ) распространена лишь в пределах западной части залежи на площади 91 га (или 20 % от общей площади нефтеносности) (см. рис. 1). Остальная часть залежи на 80 % площади представлена водонефтяной зоной (ВНЗ).

Толщина глинистого пропластка, отделяющего нефть от воды в разрезе пласта $\mathcal{A}1$, составляет в среднем 1,8 м, в том числе по западной части — 0,1 м (это — "контактная" зона), по восточной — 2,2 м. В результате анализа установлено, что "контактными" (т. е. практически не имеющими в разрезе глинистого раздела от

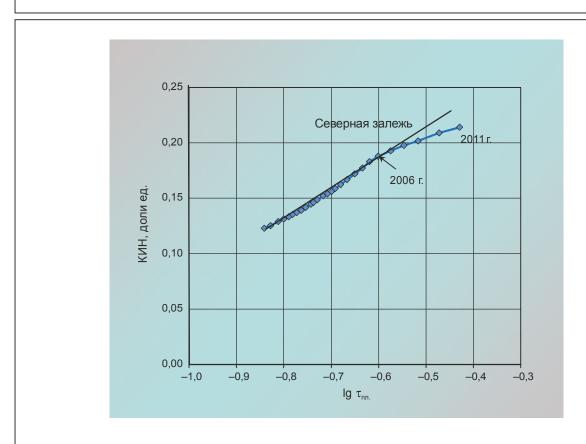


Рис. 4. Характеристики вытеснения по залежи пласта Д1 в координатах Q_{\shortparallel} = $f(\lg \Sigma Q_{\shortparallel})$

Рис. 5. Зависимость КИН – $\lg \tau_{nx}$. Объект Д1

Таблина 1

Геолого-физическая характеристика пласта Д1 в пределах рассматриваемой залежи

№ п/п	Параметры	Всего по	В том числе по участкам	
11/11		залежи	Запад	Восток
1	Площадь нефтеносности $F_{\scriptscriptstyle \rm H}$, га	455	191	264
2	Нефтенасыщенная толщина по скважинам $h_{\rm H}$, м	3,7	4,7	3,1
3	Пористость пласта <i>m</i> , %	16,2	15,4	16,9
4	Проницаемость пласта $K_{\text{пр.}}$, мД	80	50	110
5	Начальная нефтенасыщенность $K_{\text{нн}}$, %	87	89	88
6	Песчанистость пласта $K_{\text{песч.}}$, %	70	80	70
7	Расчленённость пласта $K_{\text{расчл.}}$, б/р	2,4	2,0	2,6
8	Послойная неоднородность (по В.Д. Лысенко) $V_{\rm noc.n.}^{2}$	0,318	0,270	0,410
9	Площадь ЧНЗ, га/доля ЧНЗ по площади, %	91/20	91/52	-/-
10	Толщина глинистого раздела нефти от воды, м	1,7	0,1	2,2
11	Средняя водонасыщенная толщина $h_{\text{в}}$, м	2,8	0,7	4,3
12	Соотношение $h_{\scriptscriptstyle \rm B}/h_{\scriptscriptstyle \rm H}$, б/р	0,89	0,15	1,39
13	Проводимость пласта $K_{\text{пр}} \cdot h_{\text{н}}$, мД·м	296	235	341
14	Гидропроводность пласта, мД⋅м/сП	66	52	76
15	Геологические запасы нефти, тыс. т	1228	523	705
16	Извлекаемые запасы нефти, тыс. т	430	183	247
17	КИН (по оценке автора), доли ед.	0,35	0,35	0,35
18	Плотность НИЗ нефти, тыс. т/га	0,95	0,96	0,94

воды) являются 76 % начальных геологических запасов (НГЗ) пласта на 72 % его площади. Эффективная толщина водоносных пропластков в ВНЗ составляет в среднем 2,8 м (соотношение $h_{\rm B}/h_{\rm H}=0,76$), в том числе по западной части – 0,7 м ($h_{\rm B}/h_{\rm H}=0,15$), по восточной – 4,3 м ($h_{\rm B}/h_{\rm H}=1,4$). С учётом водонефтяного типа строения средняя величина $K_{\rm перф.}$ суммарной нефтенасыщенной толщины по скважинам составляет 0,8, в том числе по добывающим – 0,76, по нагнетательным – 0,97. Таким образом, при разработке рассматриваемого объекта ожидаемая характеристика обводнения должна быть типичной для водонефтяных залежей.

Из приведённых данных видно, что геологическое строение пласта в западной и восточной частях залежи существенно различается (см. рис. 1). Отметим также, что достоверная проницаемость пласта по данным исследования керна не установлена.

Плотность начальных запасов нефти в целом по залежи невелика: по НГЗ – 2,7 тыс. т/га, по НИЗ нефти (при принятом автором КИН = 0,35 доли ед.) – 0,95 тыс. т/га. Прочие параметры пласта Д1 следующие: начальное $P_{\text{пл.}}$ – 21,8 МПа, $P_{\text{нас.}}$ – 9,2 МПа, пластовая температура +39 °C, вязкость пластовой нефти – 4,5 сП, плотность нефти – 0,891 т/м³, газосодержание – 54 м³/т.

Из приведённого обзора геологических данных видно, что рассматриваемая залежь пласта Д1 находится в некой "пограничной" области между двумя технологиями разработки: на "естественном режиме" и "с ППД". Задачей, решаемой в рамках настоящего исследования, и является установление целесообразности (или нецелесообразности) организации закачки воды

в малую залежь в рассматриваемых геологических условиях.

3. История разработки залежи

Залежь нефти введена в разработку в 1969 г. Характеристика показателей разработки залежи дана по состоянию на 01.01.2012 г., т. е. за период разработки 43 года (рис. 2).

Максимальные за историю уровни составили: добыча нефти – 13,3 тыс. т (при невысоком темпе отбора от начальных извлекаемых запасов (НИЗ) -3.1%), добыча жидкости – 54 тыс. т (темп отбора жидкости от НИЗ нефти удовлетворительный – 12,6 %), закачка воды -27,3 тыс. м³. В 2011 г. показатели разработки залежи составляли: добыча нефти -6.5 тыс. т (темп отбора от НИЗ -1.5 %), добыча жидкости – 54 тыс. т, закачка воды – 41 тыс. м³. В работе находились 9 скважин, в том числе добывающих – 7, нагнетательных – 2. Средний дебит нефти в 2011 г. – 2,7 т/сут, жидкости – 22 т/сут при обводнённости 88 %, текущая компенсация отбора жидкости закачкой воды 73 %.

Накопленные показатели (рис. 3) по залежи: добыча нефти – 263 тыс. т, жидкости – 514 тыс. т, ВНФ – 0,95 т/т, закачка воды – 1002 тыс. м³, компенсация с начала разработ-

ки — 170 % (вся закачка была внутриконтурной — в две скважины). Удельный накопленный отбор нефти на 1 скважину, перебывавшую в добыче (всего — 13 скважин), 20 тыс. т/скв., удельная добыча жидкости — 40 тыс. т/скв.

Коэффициент прокачки жидкости $\tau_{\text{пл.}}$ через поровый нефтенасыщенный объём залежи в пластовых условиях невелик — 0,372. Текущий КИН — 0,214 доли ед., от "оценочных" НИЗ (при КИН = 0,35 доли ед.) отобрано — 61 %, обводнённость — 88 %. Текущие извлекаемые запасы (ТИЗ) нефти на 01.01.2011 г. составили 174 тыс. т, темп отбора нефти от ТИЗ в 2011 г. — 3,7 %, кратность ТИЗ \simeq 27 лет. Удельные ТИЗ нефти на 1 действующую добывающую скважину — 24 тыс. т/скв.

Из изложенного следует, что перспектива достижения КИН = 0,35 доли ед. по рассматриваемому объекту достаточно проблематична. А полученные за 43 года эксплуатации залежи результаты трудно назвать удовлетворительными. По мнению автора, одной из причин получения невысокой фактической нефтеотдачи является неправильный выбор технологии разработки, а именно неоправданное и преждевременное формирование системы ППД. Речь идёт о массированной фактической очаговой закачке больших объёмов воды ("перекомпенсации") в ограниченное число (2 скважины) внутриконтурных скважин. Для малой залежи пласта Д1 подобное заводнение не могло не привести к отрицательным результатам разработки.

Западная часть залежи разбурена 5 скважинами по неравномерной сетке с расстоянием между скважинами от 375 до 600 м, в среднем – 500 м, плотность сет-

ки скважин (ПСС) — 25 га/скв. Восточная часть залежи разбурена 8 скважинами по более плотной сетке — 19 га/скв. при расстоянии между скважинами от 225 до 600 м, в среднем — 435 м.

Закачка воды начата на месторождении в 1978 г. (спустя 10 лет после начала добычи) в две нагнетательные скв. 13 и 4. Скважина № 13 расположена в западной части залежи, поблизости от купола структуры, в зоне с наибольшей плотностью запасов. Накопленный объём закачки воды по ней 326 тыс. м³.

Скважина № 4 расположена на восточной части залежи, в приконтурной области. В скважину закачано 676 тыс. м³ воды, это превышает суммарный объём жидкости (в пластовых условиях), отобранный из всех работавших на залежи 13 скважин, на 15 %. Столь неравномерное и нерациональное распределение закачки по скважине не могло не повлиять отрицательно на качество процесса вытеснения нефти по залежи (рис. 4). Рассмотрим этот момент более подробно и поэтапно за историю.

В истории разработки рассматриваемой нефтяной залежи выделяется несколько этапов (табл. 2, рис. 2, 4).

Этап 1. В 1969–1977 гг. (9 лет) – разработка осуществлялась на естественном режиме без ППД. Действующий добывающий фонд достигал 10 скважин. За этап отобрано 70 тыс. т нефти (или 16 % от НИЗ при обводнённости в конце этапа 27 %) и 80 тыс. т

жидкости, накопленный ВНФ 0,14 т/т. Дебит скважин по жидкости, составлявший вначале 12...15 т/сут, к концу этапа снизился до 4 т/сут. Максимальная годовая добыча нефти на этапе 10 тыс. т (1973 г.) при темпе отбора от НИЗ 2,3 %, добыча жидкости — 11 тыс. т. Текущий КИН к концу этапа был равен 0,06 доли ед. (см. табл. 2).

Этап 2. 1978–1991 гг. (14 лет) – этап чрезвычайно интенсивной закачки воды в две нагнетательные скважины при постоянно действующем добывающем фонде 7–8 скважин в году. За этап добыто в сумме: нефти – 98 тыс. т, жидкости – 139 тыс. т, закачано воды – 831 тыс. м³ (см. табл. 2). К концу этапа 2 было отобрано: нефти – 168 тыс. т, или 39 % от НИЗ при текущей обводнённости 50 %, жидкости – 219 тыс. т при накопленном ВНФ 0,3 т/т. Максимальная годовая добыча в пределах этапа 2 составила: нефти – 14,4 тыс. т в 1982 г. (темп отбора от НИЗ 3,3 %), жидкости – 17,1 тыс. т, максимальная закачка воды (93 тыс. м³) приходится на 1983 г., приёмистость скважин – 150... 180 м³/сут.

В пределах этапа 2 накопленный отбор жидкости был компенсирован суммарной закачкой воды на 500 %. Максимальная же текущая годовая компенсация в 1989 г. достигала 800 % (!!). Эта массированная перекачка залежи привела к значительному ухудшению характеристики её обводнения (см. рис. 4). В то же

Таблица 2

Показатели разработки залежи по этапам

№	Показатели			n.			
п/п			1	2	3	4	В целом
1	Продолжительность этапа, лет/годы		9	14	14	6	43
1			1969–1977	1978–1991	1992–2005	2006–2011	1969–2011
2	Режим разработки		Естественный	с ппд	Естественный	С ППД	23 года – естеств., 20 лет – с ППД
3	Максимальные уровни добычи за этап, тыс. т/год	нефти	10,0	14,4	7,0	8,9	14,4
3		жидкости	10,8	17,1	11,2	54,2	54,2
4	Темп отбора от НИЗ, %	нефти	2,32	3,35	1,63	2,07	3,35
		жидкости	2,51	3,98	2,60	12,6	12,6
5	Максимальная закачка воды, тыс. м ³ /год		_	93,1	_	41,3	93,1
6	Максимальная текущая годовая компенсация, %		_	795	_	107	795
7	Средняя компенсация за этап, %		0	500	0	82	170
8	Накопленная добыча за этап, тыс. т	нефти	70	98	56	38	263
0		жидкости	80	139	96	198	514
9	Накопленный ВНФ, т/т		0,14	0,42	0,73	4,2	0,95
10	Средняя обводнённость, %		12,5	29,5	41,7	80,8	48,8
11	Накопленная закачка воды за этап, тыс. м ³		_	831	_	171	1002
12	Число добывающих скважин, шт.		6	7	7	8	7
13	Число нагнетательных скважин, шт.		_	2	_	2	2
14	Максимальный дебит за этап (в году), т/сут	нефти	13,6	5,8	3,5	3,3	13,6
14		жидкости	14,6	6,9	6,2	22,3	22,3
15	Средний дебит за этап, т/сут	нефти	6,5	2,8	2,0	2,4	3,3
		жидкости	7,1	4,0	3,5	12,5	5,7
16	Показатели к концу этапа	отбор от НИЗ, %	16,2	39	52	61	61
		обводненность, %	22	50	35	88	88
		КИН, доли ед.	0,057	0,137	0,182	0,214	0,214
17	Прокачка $\tau_{\text{пл.}}$ к концу этап	0,063	0,169	0,240	0,372	0,372	

время, отметим, что интенсивное нагнетание воды не привело к росту дебита жидкости, который в среднем за этап составил всего лишь 4 т/сут, при максимальном годовом значении 6,9 т/сут (1982 г.), снизившись к концу этапа до 2 т/сут (1990 г.).

Текущий КИН к концу этапа составлял 0,137 доли ед. (см. табл. 2), накопленная компенсация отборов жидкости закачкой в начале этапа -57 %, в конце -311 % (!).

Этап 3. 1992-2005 гг. (14 лет) - период полного прекращения закачки воды на залежи. За рассматриваемый период добыто нефти – 56 тыс. т. жидкости – 96 тыс. т при ВНФ 0,73 т/т. С начала разработки на 01.01.2006 г. всего добыто нефти 224 тыс. т, отбор от НИЗ – 52 % при текущей обводнённости 51 %, жидкости – 315 тыс. т при накопленном ВНФ 0,41 т/т. В начале периода в действующем фонде находились 9 добывающих скважин, в конце этапа - 6 (3 скважины были остановлены). Текущий КИН к концу этапа достиг 0,182 доли ед. (см. табл. 2). Максимальная добыча нефти – 7 тыс. т, жидкости – 11 тыс. т, причём дебит жидкости за рассматриваемый период вырос с 2,3 до 5,0 т/сут. Таким образом, на этапе 3 был осуществлён некоторый "форсаж" отборов жидкости (ФОЖ). Вкупе указанные действия привели к значительному улучшению характеристики обводнения залежи (см. рис. 4). Накопленная компенсация отборов закачкой за 14 лет этапа 3 снизилась с 311 до 218 %.

Этап 4. 2006—2011 гг. (6 лет) — период возобновления закачки воды в две нагнетательные скважины при весьма умеренной текущей компенсации — 70...105 %. В этот же период был проведён значительный (четырёхкратный) форсаж отборов жидкости — с 14,5 тыс. т (2006 г.) до 54,2 тыс. т (2011 г.). Однако в условиях ВНЗ это мероприятие привело к быстрой обводненности продукции скважин — с 59 % в 2006 г. до 88 % в 2011 г.

Всего за этап 4 добыто: нефти -38,5 тыс. т, жид-кости -198 тыс. т при ВНФ 4,2 т/т, закачано воды -171 тыс. $м^3$.

С начала разработки на 01.01.2012 г. всего отобрано: нефти – 207 тыс. т, отбор от НИЗ – 48 %, жидкости – 417 тыс. т при накопленном ВНФ 0.95 т/т. Текущий КИН – 0.214 доли ед. В работе находились 8–9 добывающих и 2 нагнетательные скважины. Дебит нефти составлял: в начале этапа 2.5 т/сут, в конце этапа 2.7 т/сут, жидкости – 6.1 и 18.2 т/сут. В целом за этап 4 отбор жидкости был компенсирован закачкой воды на 82 %. Накопленная компенсация за весь период разработки на 01.01.2012 г. составила 170 % (см. табл. 2).

Автором выполнен анализ (по характеристике вытеснения С.Н. Назарова) влияния массированной ("ненормированной") текущей закачки воды, а также её прекращения на величину извлекаемых запасов нефти. Отметим, что на этапе 1 (1969–1977 гг.) обводнённость продукции была невелика, поэтому прогноз НИЗ по характеристике вытеснения здесь недостоверен.

Получены следующие результаты:

- Если в начале этапа 2 (1978–1984 гг.) интенсивной закачки прогнозный НИЗ составлял 299 тыс. т, то в конце этапа (1985–1991 гг.) 216 тыс. т, т. е. снизился на 83 тыс. т (или 28 %). Причина необоснованное доведение текущей годовой компенсации до уровня в среднем 600 % в год (а максимальной до 800 % в год).
- Полное прекращение закачки воды на этапе 3 (1992–2005 гг.) привело к значительному улучшению характеристики обводнения залежи (см. рис. 4). На этом этапе прогнозный НИЗ увеличился в среднем до 383 тыс. т.
- После возобновления закачки и организации ФОЖ (в неблагоприятных условиях ВНЗ) темпы обводнения продукции резко увеличились, а прогнозный НИЗ сократился до 287 тыс. т, т. е. на 96 тыс. т (25 %) относительно этапа 3.

Из приведённых данных следует, что характеристика вытеснения (по С.Н. Назарову) весьма чувствительна к "экспериментам" по перекомпенсации энергетики залежи.

История организации закачки воды на участке

Под закачкой на залежи находились две скважины: на западе – скв. 13, на востоке – скв. 4.

Скважина № 13 расположена в купольной части структуры, в зоне с максимальной плотностью начальных запасов нефти, на границе ЧНЗ и ВНЗ зон. Пласт Д1 в скв. 13 имеет $h_{\rm H}=6,8$ м, $K_{\rm пр.}=134$ мД (по ГИС), $K_{\rm пр.}\cdot h_{\rm H}=911$ мД·м, послойная неоднородность -0,41. Скважина № 13 была введена в добычу нефти 30.03.1969 г. первой на всём месторождении, с начальным дебитом безводной нефти 14 т/сут. В отработке на нефть скв. 13 находилась 3319 сут. В 1978 г. была передана под закачку при накопленной добыче нефти 22,2 тыс. т, жидкости -23,4 тыс. т и текущей обводнённости 3 %. В безводный период (1357 сут) по скв. 13 было добыто нефти 9340 т (42 % от текущей добычи) со средним дебитом 6,9 т/сут.

Перевод скв. 13 под закачку в 1978 г. был связан с существенным снижением $P_{\text{пл.}}$ к этому времени. При начальном $P_{\text{пл.}} = 21,8$ МПа, текущее пластовое давление в залежи снизилось примерно на 5,8 МПа (27 %) до 16 МПа. По мнению автора, перевод в ППД ключевой добывающей скважины был преждевременным и ошибочным решением. Острой необходимости в этом не было. Всего в скв. 13 закачано 326 тыс. м³ воды.

Скважина № 4 расположена в приконтурной области (ВНЗ) на восточной части залежи в 625 м от купола залежи и в 350 м от контура нефтеносности в зоне с низкой плотностью начальных запасов нефти. Нефтенасыщенная толщина пласта Д1 в скв. 4 составляет 2,8 м, водонасыщенная — 1,2 м. Проницаемость нефтяной части ~40 мД, проводимость 110 мД·м. Скважина была введена в добычу 29.08.1974 г. с низкими дебитами нефти — 0,5 т/сут и жидкости — 2,7 т/сут. Безводный период по скважине отсутствовал.

В эксплуатации на нефть скважина находилась 846 сут. В январе 1978 г. она была переведена под за-

Группы скважин по эффективности ФОЖ	Число сквопераций	Дебит жидкости, т/сут		Дебит нефти, т/сут		Обводнённость, %		Доп. добыча нефти за счёт	Уд. добыча нефти на 1 скв.,
эффективности ФОЖ		до	после	до	после	до	после	ФОЖ, т	т/скв.
Успешные	6	6,6	20,6	2,4	6,9	63	67	13686	2281
Малоуспешные	9	5,9	25,1	1,1	2,3	82	91	2630	292
Неуспешные	6	7,1	17,3	2,2	1,5	69	92	-1023	-170
Всего	21	6,4	21,6	1,8	3,4	72	84	15293	728

Результаты работ по ФОЖ на 12 скважинах в 2004-2011 гг.

качку воды при обводнённости 70 %. Общая добыча по скв. 4 незначительна: нефти — 0,6 тыс. т, жидкости — 2,2 тыс. т при ВНФ 27 т/т. В скв. 4 всего закачали 676 тыс. $\rm m^3$ воды. Перевод скважины в ППД следует признать обоснованным. Однако последующие режимы закачки: текущая, годовая и накопленная компенсации многократно превосходили все рациональные и разумные пределы.

Тем не менее за счёт организации закачки воды в две скважины к 2011 г. пластовое давление в залежи удалось восстановить до начального уровня.

Сведения об эффективности форсированного отбора жидкости из скважин приведены в табл. 3. С учётом роста $P_{\text{пл.}}$ в залежи в 2004—2011 гг. на 12 скважинах месторождения (т. е. на этапе разработки с ППД) проведена 21 сквоперация по увеличению отбора жидкости. Из них успешными оказались 6 скв.-операций (29 %), малоуспешными — 9 скв.-операций (42 %) и неуспешными — 6 скв.-операций (29 %) (см. табл. 3). Удельная эффективность 1 скв.-операции по ФОЖ составляет в среднем 728 т/сут, в том числе по "успешным" +2281 т/скв., по "малоуспешным" +292 т/скв.

В целом за счёт рассматриваемых ФОЖ удалось нарастить дебит жидкости в 3,4 раза – с 6,4 до 21,5 т/сут. Дебит нефти при этом вырос почти вдвое - с 1,8 до 3,4 т/сут, а обводнённость увеличилась на 12 % (абс.). Более эффективными оказались ФОЖ в скважинах, имеющих повышенную расчленённость и послойную неоднородность пласта. Несмотря на эффективность ФОЖ по отдельным скважинам, общее форсирование отборов жидкости по залежи с 10,8 тыс. т (2005 г.) до 54,2 тыс. т при неизменном фонде скважин (8 шт.), оказало отрицательное влияние на характеристику вытеснения, построенную в координатах КИН = $f(\lg \tau_{III})$ (рис. 5). Эффективность выработки запасов нефти по залежи в этот период сократилась весьма существенно.

Показатели выработки запасов нефти по залежи

За 43 года накопленная добыча нефти по залежи составила 263 тыс. т, текущий КИН – 0.214 доли ед., от НИЗ отобрано 61 % при

текущей обводнённости 88 %, накопленный ВНФ — 0,95 т/т, степень прокачки $\tau_{\text{пл.}}$ — 0,37. За безводный период эксплуатации 11 скважин по залежи КИН составил 0,044 доли ед., в том числе по западу (5 скважин) — 0,048 доли ед., по востоку (6 скважин) — 0,041 доли ед. Достигнутые показатели следует расценивать как малоуспешные. Средняя кратность ТИЗ нефти велика — 27 лет, в том числе по западу — 16 лет, по востоку — 49 лет (табл. 4).

Согласно оценке автора ожидаемый конечный КИН может составить 0,35 доли ед., в том числе $K_{\text{выт.}} - 0,650$,

Таблица 4 Показатели выработки запасов нефти по залежи пласта Д1 на 01.01.2012 г.

№ п/п	Показатели	Всего по залежи	В том числе по участкам	
11/11		по залежи	Запад	Восток
1	Плотность сетки скважин, га/скв.	21,3	25	19
2	Срок разработки, лет	43	43	43
3	НГЗ, тыс. т	1228	523	705
4	То же в пластовых условиях, тыс. м ³	1587	676	911
5	НИЗ (оценка автора), тыс. т	430	183	247
6	КИН (оценка автора), доли ед.	0,35	0,35	0,35
7	Накопленная добыча нефти, тыс. т	263	120	142
8	Накопленная добыча жидкости, тыс. т	514	226	288
9	Накопленная закачка воды, тыс. м ³	1002	326	676
10	Накопленный ВНФ, т/т	0,95	0,88	1,03
11	Текущий КИН, доли ед.	0,214	0,098	0,116
12	Отбор от НИЗ, %	61	66	57,5
13	Текущая обводнённость, %	88,1	87,3	89,1
14	Накопленная добыча нефти на 1 скважину, тыс. т	20,2	24,1	17,8
15	Параметр прокачки $\tau_{nn.}$, б/р	0,372	0,386	0,362
16	Добыча нефти за 2011 г., тыс. т	6,5	4,3	2,2
17	Добыча жидкости за 2011 г., тыс. т	54,2	34,0	20,2
18	ТИЗ на 01.01.2012 г., тыс. т	167	63	104
19	Действующий фонд добывающих скважин, шт.	7	3	4
20	Удельный ТИЗ на 1 скважину, тыс. т/скв.	23,9	21,0	25,0
21	Темп отбора от НИЗ в 2011 г., %	1,51	2,35	0,9
22	Темп отбора от ТИЗ в 2011 г., %	3,75	6,39	2,05
23	Кратность ТИЗ, лет	27	16	49
24	Накопленная компенсация, %	170	125	205
25	Средний дебит нефти в 2011 г., т/сут	2,7	4,4	1,5
26	Средний дебит жидкости в 2011 г., т/сут	22,3	34,7	14
27	Добыча нефти за безводный период, тыс. т	54,027	25,352	28,675
28	КИН за безводный период, доли ед.	0,044	0,048	0,041

 $K_{\text{охв.}} - 0,824$ (по А.Н. Юрьеву), $K_{\text{зав.}} - 0,653$ (по В.Д. Лысенко). Видно, что основной составляющей, обусловливающей невысокий КИН по залежи, является низкий коэффициент заводнения подвижных запасов нефти. Причина — неумелая и неэффективная организация и реализация системы ППД на рассматриваемой малой нефтяной залежи.

Тем более, что в самом "начале пути" все геологические условия и необходимые предпосылки для получения более высокого (на уровне \sim 0,4) коэффициента нефтеизвлечения на рассматриваемой залежи объекта Π 1 имелись.

Выводы

- 1. Вопрос о целесообразности (нецелесообразности) организации системы ППД на небольших нефтяных залежах, приуроченных к коллекторам с пониженной проницаемостью, является одним из ключевых, но неоднозначно решаемых при их разработке.
- 2. Представляется, что допущенное в истории снижение давления в пласте Д1 на рассматриваемой залежи на 30...35 % относительно начального не является "критичным" для состояния разработки. Таким

- образом, не было достаточных оснований для принятия решения о прекращении разработки на естественном режиме и начале организации закачки воды.
- 3. Решение об организации очаговой закачки воды в купольную часть небольшой залежи (в зоне с максимальными нефтенасыщенной толщиной и плотностью запасов) с точки зрения достижения высокой нефтеотдачи являлось ошибочным, так как это ухудшило характеристику вытеснения. Более предпочтительным в этом случае являлась закачка воды в отдельные приконтурные скважины.
- 4. Важнейшим контролируемым параметром при разработке малых залежей нефти должна быть рациональная величина текущей (годовой) компенсации отборов жидкости закачкой воды. Необоснованная и неразумная "перекомпенсация", доходившая на практике до 500 % и более в год, существенно ухудшила характеристику вытеснения и снизила коэффициент нефтеизвлечения.
- 5. Значительный форсаж отборов жидкости на участках с ВНЗ рассматриваемой залежи в стадии высокой обводнённости привёл к существенному ухудшению общей характеристики вытеснения нефти, росту обводнённости и снижению потенциального КИН.