Влияние простоев добывающих скважин на нефтеотдачу прерывистых пластов

В практике разработки нефтяных месторождений сложилось мнение о том, что бездействие добывающих скважин (в т.ч. и высокообводненных) отрицательно влияет на уровни текущей добычи нефти и приводит к потерям в нефтеотдаче. Вся сложность проблемы состоит в количественной оценке этого влияния, насколько оно велико (или мало) в условиях конкретного нефтяного месторождения.

Целью статьи является представление результатов многовариантных модельных расчетов по оценке влияния длительных (незапланированных) остановок добывающих скважин на нефтеотдачу средне- и высокопрерывистых пластов в условиях блоковой трехрядной системы разработки.

Отметим, что долю неработающего фонда добывающих скважин по России (см.табл.1) можно рассматривать как важный показатель, отражающий состояние "здоровья" нефтяной отрасли.

Таблица 1 Динамика фонда добывающих скважин по России за 1993-2009 гг.

Голи	Действ. фонд, Неработаю		Всего,	Доля фонда, %		
Годы	шт фонд, шт		ШТ	действ.	неработ.	
1993	125 035	22 014	147 049	85,0	15,0	
1994	113 795	27 816	141 611	80,3	19,7	
1995	113 311	30 121	143 432	79,0	21,0	
1996	110 525	27 524	138 049	80,1	19,9	
1997	110 399	27 836	138 235	79,9	20,1	
1998	106 085	27 705	133 790	79,3	20,7	
1999	101 937	32 935	134 872	75,6	24,4	
2000	115 427	33 219	148 646	77,6	22,4	
2001	128 485	27 570	156 055	82,3	17,7	
2002	118 185	36 118	154 303	76,6	23,4	
2003	118 926	36 337	155 263	76,6	23,4	
2004	118 868	36 803	155 671	76,3	23,7	
2005	122 657	29 955	152 612	80,4	19,6	
2006	127 983	27 220	155 203	82,5	17,5	
2007	131 343	25 786	157 129	83,6	16,4	
2008	133 085	25 359	158 444	84,0	16,0	
2009 (оценка)	133 390	25 566	158 956	83,9	16,1	
Среднее за 17 лет	119 379	29 405	148 784	80,2	19,8	

Из табл. 1 следует, что в среднем за 17 последних лет (1993-2009 гг.) неработающий фонд составлял примерно 20% от эксплуатационного, то есть из каждых пяти — одна скважина фактически не работала на добычу нефти.

Специалисты—нефтяники помнят, что с целью сокращения количества неработающих скважин десять лет назад было даже принято отдельное Постановление Правительства РФ (№1213 от 01.11.1999г.) "О мерах по вводу в эксплуатацию бездействующих, контрольных и находящихся в консервации скважин на нефтяных месторождениях".

Постановление распространялось не на весь фонд, а только на неработавший – именно по состоянию на 01.01.1999г. Нефть, полученная за счет

ввода этих скважин в работу, освобождалась от регулярных платежей за добычу нефти и отчислений на ВМСБ, а также имела нулевую ставку акциза.

Вначале указанное постановление сработало хорошо: в 2001 г. неработающий фонд сократился (по сравнению с 2000 г.) на 5649 скважин или 17%. Однако в 2002 г. этот неработающий фонд вновь вырос, причем весьма значительно – на 8548 скважин или 31%, достигнув 36118 скважин.

В 2009 г. количество неработающих скважин снизилось до 25,6 тысяч или 16% от фонда. Тем не менее, указанный простаивающий фонд обладает определенным потенциалом для добычи нефти, который сейчас не используется. Хуже другое — длительные простои этих скважин способны отрицательно повлиять на конечный коэффициент извлечения нефти (КИН).

Проблема оценки потерь в текущей добыче нефти и конечной нефтеотдаче пластов в зависимости от различных условий бездействия скважин изучалась многими исследователями.

Авторами [1] показано (см.табл.2), что прекращение эксплуатации участка при обводненности 95% сократит потенциальный КИН на 2,8 процентных пункта или 7% относительных.

Таблица 2 Зависимость КИН от средней обводненности фонда скважин

Показатели	Варианты [1]							
Показатели	1	2	3	4	5	6		
Средняя обводненность отключения скважин, %	49	70	90	95	97,9	99,9		
Конечный КИН, доли ед.	0,274	0,310	0,354	0,373	0,390	0,401		
±∆ КИН, доли ед.	-0,127	-0,091	-0,047	-0,028	-0,011	_		
То же (% отн.) от варианта 6	-31,7	-22,7	-11,7	-7,0	-2,8	_		

В работе [2] отмечено, что согласно гидродинамическому моделированию зонально неоднородного пласта в условиях трехрядной системы размещения остановка скважин способна снизить КИН на 4-6%. Повторный пуск этих скважин снижает потерю КИН до 1-3% от проектного. /Прим.автора: в статье [2] не указано, какие это проценты – абсолютные или относительные. /

Таблица 3 Зависимость КИН от дебита нефти при отключении скважин

Попомотр	Нафтастиона [2]	Дебит нефти при отключении скважин, т/сут						
Параметр	Нефтеотдача [3]	0,5	1	2	5	10		
	КИН, доли ед.	0,278	0,274	0,270	0,267	0,256		
$\mu_0 = 5$	±∆ КИН, доли ед.	_	-0,004	-0,008	-0,011	-0,022		
	То же, % отн.	_	-1,4	-2,9	-4,0	-7,9		
$\mu_0 = 2$	КИН, доли ед.	0,368	0,368	0,58	0,342	0,325		
	±∆ КИН, доли ед.	_	_	-0,010	-0,026	-0,043		
	То же, % отн.	_	_	-2,7	-7,1	-11,7		
$\mu_0 = 1$	КИН, доли ед.	0,435	0,435	0,430	0,405	0,388		
	±∆ КИН, доли ед.	_	_	-0,005	-0,030	-0,047		
	То же, % отн.	_	_	-1,2	-6,9	-10,8		

В статье [3] на основании трехмерного моделирования разработки (см.табл.3) неоднородного по проницаемости четырехслойного пласта в условиях пятирядной системы размещения скважин (расстояние между сква-

жинами 500 м, ширина первой полосы 1000 м) получено:

- для залежей с маловязкими нефтями ($\mu_0 = 1-2$) раннее отключение добывающих скважин более "опасно", чем для более вязких нефтей ($\mu_0 = 5$);
- отключение скважин с дебитом нефти 2 т/сут снижает КИН незначительно, примерно на 0,5-1 процентный пункт (или 1,2-2,9 % отн.);
- ощутимые потери КИН (2,2-4,7 процентных пункта или 7,9-11,7 % отн.) возникают при остановке скважин с дебитом нефти 10 т/сут.

В статье [4] подробно рассмотрена методическая сторона проблемы, но каких-либо количественных данных о влиянии простоев скважин на конечный КИН, к сожалению, автор не приводит.

В работе [5] на основании обобщения фактических результатов разработки 19 нефтяных залежей (в т.ч. 11 в терригенных коллекторах, 8 – в карбонатных) Пермского Прикамья, получено, что:

- выбытие из эксплуатации 30% фонда скважин снижает накопленную за весь срок добычу нефти в терригенных коллекторах на 1,5-3,2 % отн.;
 - то же в карбонатных пластах на 2-6% отн.

В публикации [6] на основании обработки фактических материалов эксплуатации 114 ячеек объекта $Б_{10}$ Мамонтовского месторождения установлено, что "ликвидация скважин по техническим причинам плюс остановка скважин вследствие нерентабельности продолжения их эксплуатации привели (см.табл.4) к снижению КИН на 1,6-2,8 процентных пункта или 3,4-6% (отн.)".

Таблица 4 Зависимость КИН от доли выбывших скважин

Показатели	Доля длительно простаивающих и ликвидированных скважин от общего пробуренного фонда				
нефтеотдачи [6]	0%	3,5%	7,0%		
Конечный КИН, доли ед.	0,467	0,451	0,439		
Снижение КИН, доли ед.	_	0,016	-0,028		
То же. % отн.	_	-3.4	6.0		

В работе [6] также установлено, что гораздо более существенно остановки скважин влияют на конечный КИН низкопродуктивных участков (с проницаемостью < 100 мД), нежели по высокопродуктивным.

В работе [7] (попутно) отмечается, что расчетные потери в нефтеотдаче из-за массовых простоев скважин могут достичь 10%. /Прим.автора: но не указано каких – абсолютных или относительных процентов./

В статье [8] в результате обработки фактических данных об остановке группы добывающих скважин (в т.ч. высокодебитных) на месторождении Узень установлено отрицательное влияние этого мероприятия на динамику последующей добычи нефти и обводненность скважин.

Таким образом, из публикаций следует, что недобор (потери) извлекаемых запасов нефти из-за преждевременной остановки добывающих скважин, оценивается в 6-12% (отн.).

Отметим, что преждевременное выбытие добывающих скважин из эксплуатации сопровождается следующими отрицательными последствиями:

- разрежение регулярной, геометрической сетки скважин влечет за со-

бой снижение коэффициента охвата (Кохв) пласта фильтрацией [9];

- увеличение геометрической неоднородности (по В.Д.Лысенко) оставшейся системы приводит к снижению коэффициента заводнения (К_{зав});
- сокращение степени промывки порового объема залежи водой $\tau_{\text{пл}}$ [10] обусловливает снижение коэффициента заводнения $K_{\text{зав}}$;
 - снижение, в итоге, конечного коэффициента извлечения нефти.

Среди возможных противоположных последствий выбытия части добывающих скважин можно отметить:

- снижение общей обводненности добываемой продукции по залежи;
- рост дебитов нефти и жидкости оставшегося в эксплуатации добывающего фонда скважин при условии неизменности системы закачки (ППД);
 - улучшение текущих экономических показателей разработки [11].

Рассмотрим далее результаты, полученные авторами при моделировании разработки средне- и высокопрерывистых пластов в плане изучения влияния остановок добывающих скважин на конечный КИН. / Указанные расчеты проведены авторами статьи еще в 1994 г., однако до сих пор не были опубликованы. /

Исследования выполнялись ТОО "ТЭРМ" по заданию НГДУ "Майскнефть", предполагавшего создать в то время специализированное предприятие по капитальному ремонту скважин с участием иностранного партнера.

Для месторождений НГДУ "Майскнефть" ситуация с простоями скважин оказалась равносильной разрежению эксплуатационной сетки с 25 до 39 га/скв. Снижение коэффициента охвата (см.рис.1) вследствие этого оценивается: для среднепрерывистых пластов в 5-7% (отн.), для высокопрерывистых объектов – в 10-15% (отн.).

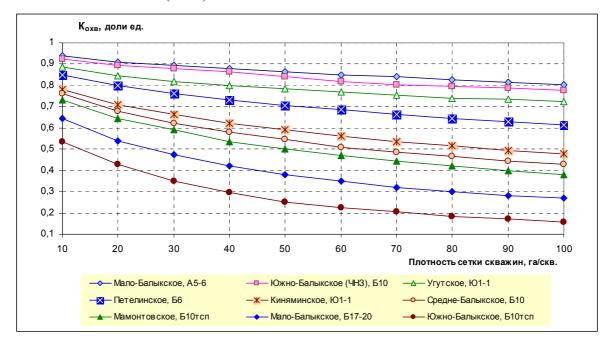


Рис.1. Зависимость коэффициента охвата от плотности сетки скважин по объектам месторождений НГДУ "Майскнефть"

На 01.07.1994 г. на пяти основных месторождениях НГДУ "Майскнефть" в бездействии находилось немало добывающих скважин. По 78 из них пока-

затели перед остановкой (см.табл.5) были следующие: дебит нефти 8,1 т/сут, дебит жидкости 25 т/сут, обводненность 68 %; накопленная добыча нефти 4236 тыс.т, воды 2667 тыс.т; водонефтяной фактор (ВНФ) -0,63; на 1 скважину отобрано нефти ~ 54 тыс.т/скв.

Таблица 5 НГДУ "Майскнефть" Фактические показатели по простаивающим скважинам (на 01.07.1994 г.)

Mec-	Прод. 1	Число	На дату остановки			Накопленная добыча		Извлек.запасы нефти, тыс.т		% оста-
Торож-	пласт	т Сква-	Дебит	, т/сут	Обводн.,	Нефти,	Воды,	Потен-	Оста-	точных
дение		ниж	нефти	жидк.	%	тыс.т	тыс.т	циальн.	точные	от НИЗ
	A ₅₋₆	11	2,9	17,4	83,5	352	324	915	564	62
Южно-	A_{4-6}	14	2,4	13,6	82,4	687	598	1663	976	59
Балык-	$\overline{\mathbf{b}}_{10}$	16	9,1	25,5	64,3	1795	903	4159	2364	57
ское	Всего	41	5,1	19,3	73,6	2833	1825	6736	3903	58
	Ha 1 c	кважину	_	_	_	69	45	164	95	_
Средне- Балык-	Б ₁₀	6	9,6	53,7	82,1	434	283	1332	898	68
ское	На 1 скважину		1	-	_	72	47	222	150	_
Мало- Балык-	A_4	3	5,5	7,7	76,6	13,8	31	36	22,2	62
ское	На 1 скважину		_	-	_	4,6	10	12	7,4	_
	Б ₁₁	6	18,5	55,2	66,5	523	290	1791	1268	71
Май-	Б ₁₂	5	16,8	31,3	46,5	94	23	201	107	53
ское	Всего	11	17,7	44,3	60,0	617	313	1992	1375	53
	Ha 1 c	На 1 скважину		_	_	56	28	181	125	_
Пете-	Б ₆	17	8,9	20,2	55,9	338	215	977	639	65
линское	Ha 1 ci	кважину	_	_	_	20	13	58	37,6	_
Итого 78		8,1	25,2	67,9	4236	2667	12865	8106	63	
На	1 скважі	ину	_	_		54	34	165	104	_

Несмотря на то, что простаивающие скважины перед остановкой имели обводненность 68%, в них сосредоточено значительное количество остаточных (неизвлеченных) запасов нефти. То есть эти скважины необходимо было ремонтировать и вводить в добычу на нефть.

Авторами статьи на двумерной математической модели (автор программ В.П.Майер) исследовалась разработка пластов в условиях блоковой трехрядной системы размещения скважин 500×500 м (плотность 25 га/скв) с треугольной сеткой при ширине блока 2 км.

Всего на модели рассчитано 42 варианта разработки, в т.ч. 21 вариант для средне- и 21 для высокопрерывистых пластов. Моделировались следующие условия преждевременного отключения скважин:

- а) в первом и втором (стягивающем) рядах 3^х-рядного блока;
- б) при обводненности добывающих скважин 10 и 60%;
- в) время простоя скважин принималось равным:
 - без простоев (базовый вариант);
 - один и два года бездействия скважины;
 - бездействие до конца разработки.

Выбытие нагнетательных скважин в вариантах не моделировалось.

Местопол.	Обводн.	* * *									
отключаемой	при откл.,	стоя скважи-	КИН,	с простоямі							
скважины	%	ны, годы	доли ед.	доли ед.	% отн.						
а) Для среднепрерывистых пластов											
/ Без простоя скважин конечный КИН = 0,398 /											
		1	0,389	-0,009	2,3						
	10	2	0,392	-0,006	1,5						
,	10	4	0,393	-0,005	1,3						
1 ^й добыва-		бессрочно	0,363	-0,035	8,8						
ющий ряд		1	0,395	-0,003	0,8						
	60	2	0,397	-0,001	0,3						
	00	4	0,398	-0,000	0,0						
		бессрочно	0,374	-0,024	6,0						
		1	0,384	-0,014	3,5						
	10	2	0,385	-0,013	3,3						
ΩЙ	10	4	0,386	-0,012	3,0						
2 ^й ряд		бессрочно	0,318	-0,080	20,0						
/стяги-	60	1	0,393	-0,005	1,3						
вающий/		2	0,393	-0,005	1,3						
		4	0,394	-0,004	1,0						
		бессрочно	0,340	-0,058	14,6						
	б),	Для высокопре									
	· ·	остоя скважин	•								
	10	1	0,211	-0,019	8,3						
		2	0,218	-0,012	5,2						
		4	0,221	-0,009	3,9						
1 ^й добыва-		бессрочно	0,177	-0,053	23,0						
ющий ряд		1	0,224	-0,006	2,6						
	60	2	0,231	-0,001	0,4						
	60	4	0,233	-0,003	1,3						
		бессрочно	0,194	-0,036	15,7						
		1	0,201	-0,029	12,6						
		2	0,203	-0,027	11,7						
2 ^й ряд	10	4	0,204	-0,026	11,3						
		бессрочно	0,172	-0,058	25,2						
/стяги-		1	0,221	-0,009	3,9						
вающий/		2	0,222	-0,008	3,5						
	60	4	0,222	-0,008	3,5						
		бессрочно	0,198	-0,032	13,9						
		оссерочно	0,170	-0,032	13,7						

По результатам расчетов проведен анализ как текущих (в динамике по годам) показателей разработки (добыча нефти – по рядам скважин и элементу в целом, добыча жидкости, обводненность, характеристики вытеснения), так и конечных показателей за весь срок эксплуатации до достижения предельной обводненности продукции 99% (коэффициент нефтеизвлечения, водонефтяной фактор, сроки разработки и др.).

Анализируя результаты произведенных обширных вычислений (см.табл.6), можно сделать следующие общие заключения:

а) при преждевременном выбытии добывающих скважин (независимо от

продолжительности простоя) происходит некоторое снижение КИН;

- б) чем раньше выбывает скважина, тем больше потери КИН в пластах;
- в) при выбытии скважин стягивающего ряда потери КИН увеличиваются (примерно в 1,5 раза) по сравнению с отключением скважин первого ряда;
- г) выбытие скважин временно улучшает характеристику вытеснения, повышает средние дебиты оставшегося фонда скважин;
- д) отключением скважин первого ряда сильнее влияет на показатели работы стягивающего ряда, нежели наоборот;
- ж) при повторном вводе скважины в работу ее обводненность всегда оказывается выше, чем до остановки.

Количественная величина потерь нефтеотдачи зависит от строения (прерывистости) пластов, местоположения выбывающих скважин, длительности их простоя, стадии разработки залежи и ряда других факторов.

Авторами получено, что для среднепрерывистых коллекторов снижение конечного КИН оценивается следующими величинами:

- B случае отключения добывающих скважин 1^{20} ряда:
- а) при обводненности 10% 0,005-0,035 (или, соответственно, 1,3-8,8% отн.) в зависимости от времени бездействия скважин;
 - б) при обводненности 60% 0,001-0,024 (или 0,3-6% отн.).
 - В случае отключения скважин 2^{го} (стягивающего) ряда:
 - а) при обводненности 10% 0.012-0.080 (или 3-20% отн.);
- б) при обводненности 60% 0,004-0,058 (или 1-15% отн.) в зависимости от продолжительности времени простоя скважин.

Для высокопрерывистых пластов относительные потери КИН из-за преждевременного выбытия скважин оказываются выше:

- B случае отключения добывающих скважин 1^{20} ряда:
- а) при обводненности 10% 0,009-0,053 (или 3,9-23% отн.) в зависимости от длительности времени простоя скважин;
 - б) при обводненности 60% 0,001-0,036 (или 0,4-16% отн.).
 - B случае отключения скважин 2^{20} (стягивающего) ряда:
 - а) при обводненности 10% 0,026-0,058 (или 11,3-25% отн.);
 - б) при обводненности 60% на 0,008-0,032 (или 3,5-14% отн.).

Можно также отметить, что отключение скважин $2^{\underline{ro}}$ (стягивающего) ряда, как правило, сильнее влияет на потери конечного коэффициента нефтеизвлечения, чем остановка добывающих скважин $1^{\underline{ro}}$ ряда.

Выводы

- 1. На каждую аварийно-выбывшую из эксплуатации скважину в НГДУ "Майскнефть" (в 1994г.) приходились значительные остаточные запасы нефти.
- 2. Длительные преждевременные остановки добывающих скважин оказывают отрицательное влияние на конечный коэффициент нефтеизвлечения.
- 3. По данным выполненного двумерного моделирования разработки в условиях трехрядной блоковой системы преждевременное выбытие скважин снижает конечный коэффициент нефтеизвлечения:
- а) для среднепрерывистых пластов (в среднем) примерно с 0,40 до 0,38, т.е. на 2 процентных пункта (или 5% отн.);

- б) для высокопрерывистых пластов (в среднем) примерно с 0,23 до 0,21, т.е. на 2 процентных пункта (или 8,7% отн.).
- 4. В наиболее неблагоприятных случаях выбытия снижение конечного коэффициента нефтеотдачи может достигнуть 5-6 процентных пунктов (или 15% отн. для среднепрерывистых и 25% отн. для высокопрерывистых продуктивных пластов).

Литература

- 1. Подлапкин В.И., Сидорова С.И. "Оценка объемов попутно добываемой воды при разработке нефтяных залежей". Тр.ВНИИ, вып.120, М., 1995, с.34-41.
- 2. Зайцев Г.С. и др. "Компьютерная система по диагностике отклонений процесса разработки залежей нефти от проектных решений". Тр.ВНИИ, вып.125, М., 2001, с.78-83.
- 3. Савенков В.Ю. "Моделирование процесса нефтеизвлечения для оценки потерь углеводородов вследствие преждевременного вывода скважин из эксплуатации". // "Нефтяное хозяйство, 2002, №1, с.28-30.
- 4. Лысенко В.Д. "Определение потерь дебитов и запасов нефти при выключении скважин из эксплуатации". // "Нефтепромысловое дело", 2002, №5, с.4-8.
- 5. Окулов Я.С., Мордвинов В.А. "Оценка возможных потерь извлекаемых запасов нефти при отключении части фонда скважин". // "Геология, геофизика и разработка нефтяных и газовых месторождений", 2005, №9-10, с.49-52.
- 6. Урманов Р.З. "Оценка влияния ликвидации и длительного простоя скважин на эффективность выработки запасов нефти Мамонтовского месторождения". // "Нефтепромысловое дело", 1999, №8, с.2-4.
- 7. Казаков А.А. "Методика оценки технологических потерь нефти при временном выводе скважин из эксплуатации". // "Нефтяное хозяйство", 2006, №3, с.105-108.
- 8. Малышев Н.А. "О влиянии остановок скважин на динамику показателей добычи нефти на месторождении Узень". // "Нефтепромысловое дело", 1978, №6, с.7-10.
- 9. Сазонов Б.Ф. "Плотность сетки скважин и её динамика в процессе разработки нефтяной залежи". Труды ВНИИ, вып.122, М., 2000, с.11-16.
- 10. Базив В.Ф. и др. "Методические рекомендации по оценке эффективности разработки нефтяных местоождений с заводнением". // Вестник ЦКР Роснедра, 2009, №4, с.4-26.
- 11. Исаченко В.М. и др. "Методический подход к обоснованию экономического предела эксплуатации добывающих скважин". // "Нефтяное хозяйство", 2004, №2, с.92-93.